Selected Publications

 

Oishi H, Martinu T, Sato M, Matsuda Y, Hirayama S, Juvet SC, Guan Z, Saito T, Cypel M, Hwang DM, Keller TL, Whitman MR, Liu M, Keshavjee S. Halofuginone treatment reduces interleukin-17A and ameliorates features of chronic lung allograft dysfunction in a mouse orthotopic lung transplant model. J Heart Lung Transplant. 2016 Apr;35(4):518-27.

Herman JD, Pepper LR, Cortese JF, Estiu G, Galinsky K, Zuzarte-Luis V, Derbyshire ER, Ribacke U, Lukens AK, Santos SA, Patel V, Clish CB, Sullivan WJ Jr, Zhou H, Bopp SE, Schimmel P, Lindquist S, Clardy J, Mota MM, Keller TL, Whitman M, Wiest O, Wirth DF, Mazitschek R. The cytoplasmic prolyl-tRNA synthetase of the malaria parasite is a dual-stage target of febrifugine and its analogs. Sci Transl Med. 2015 May 20;7(288):288ra77. doi: 10.1126/scitranslmed.aaa3575.PMID:2599522

Mattia R. Bordoli,  Jina Yum,  Susanne B. Breitkopf, Jonathan N. Thon,  Joseph E. Italiano, Jr., Junyu Xiao, Carolyn Worby,8 Swee-Kee Wong,Grace Lin,Maja Edenius, Tracy L. Keller,John M. Asara, Jack E. Dixon,Chang-Yeol Yeo, and Malcolm Whitman. A Secreted Tyrosine Kinase Acts in the Extracellular Environment. Cell, 2014 Aug 28;158(5):1033-44

Rienhoff HY Jr, Yeo CY, Morissette R, Khrebtukova I, Melnick J, Luo S, Leng N, Kim YJ, Schroth G, Westwick J, Vogel H, McDonnell N, Hall JG, Whitman M. A mutation in TGFB3 associated with a syndrome of low muscle mass, growth retardation, distal arthrogryposis and clinical features overlapping with Marfan and Loeys-Dietz syndrome.  Am J Med Genet A. 2013 Aug;161A(8):2040-6. PMCID: PMC3885154

Keller, TL., Zocco, D.,Sundrud, MS, Hendrick, M, Edenius, M, Yum, J, Kim, YJ, Lee, HK, Cortese, JF,  Wirth, D, Dignam, JD,Rao, A, Yeo, CY,  Mazitschek, R, Whitman, M. 2012. Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase. Nature Chemical Biology 8: 311-317

Sundrud MS, Koralov SB, Feuerer M, Calado DP, Kozhaya AE, Rhule-Smith A, Lefebvre RE, Unutmaz D, Mazitschek R, Waldner H, Whitman M, Keller T, Rao A. 2009. Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response. Science. Jun 5; 324(5932):1334-8.�

Whitman M.
TGF-beta family signaling in Xenopus and zebrafish embryos. In The TGF-beta family, R. Derynck and K. Miyazono, eds. CSH Press, Cold Spring Harbor, NY. 2007.

Ho DM, Chan J, Bayliss P, Whitman M.
Inhibitor-resistant type I receptors reveal specific requirements for TGF-beta signaling in vivo. Dev Biol. 2006 Jul 15;295(2):730-42.

Wawersik S, Evola C, Whitman M.
Conditional BMP inhibition in Xenopus reveals stage-specific roles for BMPs in neural and neural crest induction. Dev Biol. 2005 Jan 15;277(2):425-42.

Kunwar,P.S., Zimmerman, S., Chen, Y., Whitman,M., and Schier, A.F.
Mixer/Bon and FoxH1/Sur have overlapping and divergent roles in Nodal signaling and mesendoderm induction. Development. 2003 Dec;130(23):5589-99.

Oh, S.P, Yeo, C.Y., Lee, Y., Schrewe, H., Whitman, M., and Li, E.
Activin type IIA and IIB receptors mediate Gdf11 signaling in axial vertebral patterning.
Genes Dev. 2002 Nov 1;16(21):2749-54.

Whitman M.
Nodal signaling in early vertebrate embryos: themes and variations. Dev Cell. 2001 Nov;1(5):605-17. Review.

Yeo C, Whitman M.
Nodal signals to Smads through Cripto-dependent and Cripto-independent mechanisms. Mol Cell. 2001May;7(5):949-57.

Whitman, M.
Smads and early developmental signaling by the TGFbeta superfamily.
Genes Dev. 1998 Aug 15;12(16):2445-62. Review.

Chen,X., Weisberg, E., Fridmacher, V., Watanabe, M., Naco, G., Whitman, M.
Smad4 and FAST-1 in the assembly of activin-responsive factor.
Nature. 1997 Sep 4;389(6646):85-9.

Chen, X., Rubock, M. J., and Whitman, M. (1996).
A transcriptional partner for MAD proteins in TGF-beta signalling.
Nature. 1996 Oct 24;383(6602):691-6. Erratum in: Nature 1996 Dec 19-26;384(6610):648.

Whitman, M., Downes, C.P., Keeler, M., Keller,T., and Cantley, L. (1988).
Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature. 1988 Apr 14;332(6165):644-6.